Statistics 210B Lecture 10 Notes

Daniel Raban

February 17, 2022

1 VC Dimension, Covering, and Packing

1.1 VC dimension

Last time we were discussing function classes with polynomial discrimination. Recall that a function class \mathcal{F} has $\text{PD}(\nu)$ if for all n and $X_{1:n}$, $|\mathcal{F}(X_{1:n})| \leq (n+1)^{\nu}$. If \mathcal{F} has $\text{PD}(\nu)$, then $\mathcal{R}_n(\mathcal{F}) \leq D\sqrt{\frac{\nu \log(n+1)}{n}}$. This gives the bound $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \leq D\sqrt{\frac{\nu \log(n+1)}{n}}$. What function classes have polynomial discrimination? This question is answered by

What function classes have polynomial discrimination? This question is answered by VC theory, named for Vapnik and Chervonenkis. If a function class has "VC dimension ν ," then \mathcal{F} has $PD(\nu)$, which means that $\mathcal{R}_n(\mathcal{F}) \leq D\sqrt{\frac{\nu \log(n+1)}{n}}$.

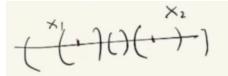
Definition 1.1. Suppose $\mathcal{F} \subseteq \{F : \mathcal{X} \to \{0,1\}\}$ is binary valued. We say that $x_{1:n}$ is **shattered** by \mathcal{F} if $|\mathcal{F}(x_{1:n})| = 2^n$. The **VC dimension**, $\nu(\mathcal{F})$, is the largest *n* such that there exists $x_{1:n}$ shattered by \mathcal{F} .

Note that $|\mathcal{F}(X_{1:n})| \leq 2^n$ always. So we want \mathcal{F} to be able to distinguish between points in a maximal sense.

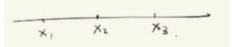
Example 1.1. Let $\mathcal{F} = \{\mathbb{1}_{\{x \leq t\}} : t \in \mathbb{R}\}$. We claim that $\nu(\mathcal{F}) = 1$. Recall that $\mathcal{R}_n(\mathcal{F}) \leq 4\sqrt{\frac{\log(n+1)}{n}}$; this will also be implied by the VC-dimension. We have to show that there is some x_1 that is shattered by \mathcal{F} , and we have to show that no x_1, x_2 can be shattered by \mathcal{F} .

For n = 1, $\mathcal{F}(\{x_1\}) = \{0, 1\}$, so $\{x_1\}$ is shattered by \mathcal{F} . For n = 2, we want to show thta $\mathcal{F}(\{x_1, x_2\}) \leq 2^2 - 1$. If we assume, without loss of generality, that $x_2 > x_1$, this is because $\mathcal{F}(\{x_1, x_2\}) = \{(0, 0), (1, 1), (1, 0)\}$. Why does this not contain (0, 1)? This is because if one of these indicators gives 1 to x_2 , then it must give 1 to x_1 .

Example 1.2. Let $\mathcal{F} = \{\mathbb{1}_{\{s \le x \le t\}} : s < t \in \mathbb{R}\}$. We claim that $\nu(\mathcal{F}) = 2$. When n = 2, we want to find x_1, x_2 such that $|\mathcal{F}((x_1, x_2))| = 2^2$. Here is how we can construct intervals to shatter a two point set:



Now suppose $x_1 < x_2 < x_3$. Then we cannot have (1,0,1), since if an interval contains x_1, x_3 then it must contain x_2



Here is an example we will not prove.

Example 1.3. Let $\phi_1, \ldots, \phi_p : \mathcal{X} \to \mathbb{R}$ be linear (which you can think of as feature maps), and consider $\mathcal{F} = \{\mathbb{1}_{\{\sum_{i=1}^p a_i \phi_i(x) \leq b\}} : a_i, b \in \mathbb{R}\}$. Then $\nu(\mathcal{F}) \leq p+1$.

By definition, for all $n > \nu(\mathcal{F})$,

$$\sup_{x_{1:n}} \left| \mathcal{F}(x_{1:n}) \right| \le 2^n - 1.$$

Proposition 1.1 (Vapnik-Chervonenkis, Sauer-Shelah¹). For \mathcal{F} with VC dimension ν ,

$$\sup_{x_{1:n}} \left| \mathcal{F}(x_{1:n}) \right| \le \sum_{i=1}^{\nu} \binom{n}{i} \le \min\left\{ (n+1)^{\nu}, \left(\frac{ne}{\nu}\right)^{\nu} \right\}.$$

By this proposition, we immediately have

$$\mathcal{R}_n(\mathcal{F}) \le D\sqrt{\frac{\nu \log(n+1)}{n}}$$

Her is an end-to-end result: If $\mathcal{F} = \{\mathbb{1}_{\{\sum_{i=1}^{p} a_i \phi_i(x) \leq b\}} : a_i, b \in \mathbb{R}\}$ and $(X_i)_{i \in [n]} \stackrel{\text{iid}}{\sim} \mathbb{P}$, then

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(X_i) - \mathbb{E}[f(X)] \right| \lesssim \sqrt{\frac{(p+1)\log n}{n}}$$

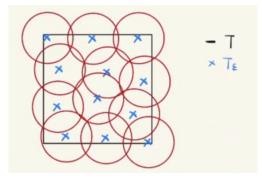
This $\log n$ factor can be eliminated later by the *chaining method*.

The proof of this proposition is a combinatorial argument; since the argument will not show up again, we will omit the proof, but you can look at the proof in the textbook.

¹This proposition was proven independently by Vapnik and Chervonenkis in 1971, by Sauer in 1972, and by Shelah by 1972.

1.2 The metric entropy method

Given a sub-Gaussian X_{θ} for all $\theta \in T$, we hope to upper bound $\mathbb{E}[\sup_{\theta \in T} X_{\theta}]$. How do we do this when $|T| = \infty$? The idea is to approximate T by a finite set T_{ε} as follows:



This gives

$$\mathbb{E}\left[\sup_{\theta\in T} X_{\theta}\right] \leq \mathbb{E}\left[\sup_{\widetilde{\theta}\in T_{\varepsilon}} X_{\widetilde{\theta}}\right] + \mathbb{E}\left[\sup_{\theta\in T, \widetilde{\theta}\in T_{\varepsilon}} (X_{\theta} - X_{\widetilde{\theta}})\right].$$

We hope that

- 1. $|T_{\varepsilon}|$ is small.
- 2. $\mathbb{E}[\sup_{\theta \in T, \tilde{\theta} \in T_{\varepsilon}} (X_{\theta} X_{\tilde{\theta}})]$ is small.

Given T and ρ , how can we find T_{ε} and bound $|T_{\varepsilon}|$?

1.3 Covering and packing

Definition 1.2. A metric space is a pair (T, ρ) , where $\rho : T \times T \to \mathbb{R}$ such that

- 1. $\rho(\theta, \theta') \ge 0$ for all $\theta, \theta' \in T$, with equality holding iff $\theta = \theta'$.
- 2. $\rho(\theta, \theta') = \rho(\theta', \theta).$
- 3. $\rho(\theta, \theta') \le \rho(\theta, \theta'') + \rho(\theta'', \theta').$

Example 1.4. If $T = \mathbb{R}^d$, here are a few useful metrics:

$$\rho(\theta, \theta') = \|\theta - \theta'\|_2, \qquad \rho(\theta, \theta') = \frac{1}{d} \sum_{i=1}^d \mathbb{1}_{\{\theta_i - \theta'_i\}}$$

The set T can be a function space, rather than a parameter space.

Example 1.5. Let $T = L^2(\mathcal{X}, \mu)$. Here are two metrics on T:

$$\rho(f,g) = \left(\int (f(x) - g(x))^2 \, d\mu(x)\right)^{1/2}, \qquad \rho(f,g) = \|f - g\|_{\infty}.$$

Definition 1.3. $T_{\varepsilon} = \{\theta^1, \ldots, \theta^N\}$ is an ε -covering of a set T if for all $\theta \in T$, there exists a $\theta^i \in T_{\varepsilon}$ such that $\rho(\theta, \theta^i) \leq \varepsilon$. The ε -covering number of T with respect to ρ is defined as

$$N(\varepsilon, T.\rho) := \inf\{N : |T_{\varepsilon}| = N, T_{\varepsilon} \text{ is an } \varepsilon \text{-covering of } T.$$

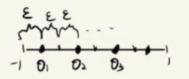
The maximal inequality gives

$$\mathbb{E}\left[\max_{\theta\in T_{\varepsilon}} X_{\theta}\right] \lesssim \sqrt{\log|T_{\varepsilon}|} \approx \sqrt{\log N(\varepsilon; T, \rho)}.$$

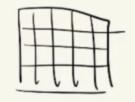
Definition 1.4. The function $\varepsilon \mapsto \log N(\varepsilon; T, \rho)$ for fixed (T, ρ) is called the **metric** entropy of the set T.

We will see examples that range from parametric families with $\log N(\varepsilon) \approx d \log(1+1/\varepsilon)$ to nonparametric families with $\log N(\varepsilon \approx (1/\varepsilon)^{\alpha})$, where $\alpha \ge 0$.

Example 1.6. Let T = [-1, 1] with $\rho(\theta, \theta') = |\theta - \theta'|$. Then $N(\varepsilon; T, \rho \leq \frac{1}{\varepsilon} + 1$.



Example 1.7. If $T = [-1, 1]^d$ with $\rho(\theta, \theta') = \|\theta - \theta'\|_{\infty}$, then $N(\varepsilon; T, \rho) \leq (\frac{1}{\varepsilon} + 1)^d$.



Up to some constant, this bound is tight.

How about with other metrics? We may not be able to figure out a cover/packing. We can take a volume approach: We should expect

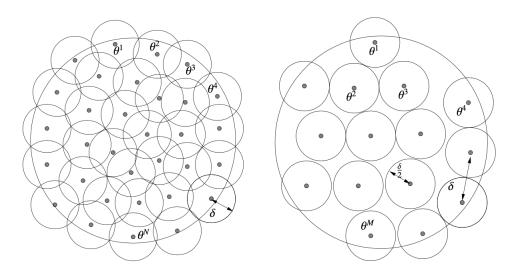
$$\log N(\varepsilon; T, \rho) \approx \log \left(\frac{\operatorname{Vol}(T)}{\operatorname{Vol}(B_{\rho}(\varepsilon))} \right).$$

To make this statement precise, we can introduce the idea of packing:

Definition 1.5. A set $\widetilde{T}_{\varepsilon} = \{\theta^1, \dots, \theta^M\} \subseteq T$ is an ε -packing if for all $\theta^i, \theta^j \in \widetilde{T}_{\varepsilon}$ with $i \neq j, \ \rho(\theta^i, \theta^j) > \varepsilon$. The ε -packing number is

 $M(\varepsilon;T,\rho) = \sup\{M: |\widetilde{T}_\varepsilon| = M, \widetilde{T}_\varepsilon \text{ is an } \varepsilon\text{-packing of }T\}.$

This means that $B_{\rho}(\theta^i, \varepsilon/2) \cap B_{\rho}(\theta^j, \varepsilon/2) = \emptyset$. Here is a picture from Wainwright's textbook comparing packings and coverings:

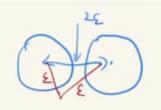


Lemma 1.1. For all $\varepsilon > 0$, we have

$$M(2\varepsilon; T, \rho) \le N(\varepsilon; T, \rho) \le M\varepsilon; T, \rho).$$

Proof. A maximal ε -packing gives an ε -covering. Suppose we have a maximal packing; then we cannot put another point into the packing, so the entire set T must be covered by the balls determined by the packing.

For a 2ε -packing with size M, all ε -coverings should have size at least M.



Otherwise, we would have a contradiction.