Statistics 210B Lecture 10 Notes

Daniel Raban

February 17, 2022

1 VC Dimension, Covering, and Packing

1.1 VC dimension

Last time we were discussing function classes with polynomial discrimination. Recall that a function class \mathcal{F} has $\operatorname{PD}(\nu)$ if for all n and $X_{1: n},\left|\mathcal{F}\left(X_{1: n}\right)\right| \leq(n+1)^{\nu}$. If \mathcal{F} has $\operatorname{PD}(\nu)$, then $\mathcal{R}_{n}(\mathcal{F}) \leq D \sqrt{\frac{\nu \log (n+1)}{n}}$. This gives the bound $\left\|\mathbb{P}_{n}-\mathbb{P}\right\|_{\mathcal{F}} \lesssim D \sqrt{\frac{\nu \log (n+1)}{n}}$.

What function classes have polynomial discrimination? This question is answered by VC theory, named for Vapnik and Chervonenkis. If a function class has "VC dimenion ν," then \mathcal{F} has $\operatorname{PD}(\nu)$, which means that $\mathcal{R}_{n}(\mathcal{F}) \leq D \sqrt{\frac{\nu \log (n+1)}{n}}$.
Definition 1.1. Suppose $\mathcal{F} \subseteq\{F: \mathcal{X} \rightarrow\{0,1\}\}$ is binary valued. We say that $x_{1: n}$ is shattered by \mathcal{F} if $\left|\mathcal{F}\left(x_{1: n}\right)\right|=2^{n}$. The VC dimension, $\nu(\mathcal{F})$, is the largest n such that there exists $x_{1: n}$ shattered by \mathcal{F}.

Note that $\left|\mathcal{F}\left(X_{1: n}\right)\right| \leq 2^{n}$ always. So we want \mathcal{F} to be able to distinguish between points in a maximal sense.

Example 1.1. Let $\mathcal{F}=\left\{\mathbb{1}_{\{x \leq t\}}: t \in \mathbb{R}\right\}$. We claim that $\nu(\mathcal{F})=1$. Recall that $\mathcal{R}_{n}(\mathcal{F}) \leq$ $4 \sqrt{\frac{\log (n+1)}{n}}$; this will also be implied by the VC-dimension. We have to show that there is some x_{1} that is shattered by \mathcal{F}, and we have to show that no x_{1}, x_{2} can be shattered by \mathcal{F}.

For $n=1, \mathcal{F}\left(\left\{x_{1}\right\}\right)=\{0,1\}$, so $\left\{x_{1}\right\}$ is shattered by \mathcal{F}. For $n=2$, we want to show thta $\mathcal{F}\left(\left\{x_{1}, x_{2}\right\}\right) \leq 2^{2}-1$. If we assume, without loss of generality, that $x_{2}>x_{1}$, this is because $\mathcal{F}\left(\left\{x_{1}, x_{2}\right\}\right)=\{(0,0),(1,1),(1,0)\}$. Why does this not contain $(0,1)$? This is because if one of these indicators gives 1 to x_{2}, then it must give 1 to x_{1}.

Example 1.2. Let $\mathcal{F}=\left\{\mathbb{1}_{\{s \leq x \leq t\}}: s<t \in \mathbb{R}\right\}$. We claim that $\nu(\mathcal{F})=2$. When $n=2$, we want to find x_{1}, x_{2} such that $\left|\mathcal{F}\left(\left(x_{1}, x_{2}\right)\right)\right|=2^{2}$. Here is how we can construct intervals to shatter a two point set:

Now suppose $x_{1}<x_{2}<x_{3}$. Then we cannot have $(1,0,1)$, since if an interval contains x_{1}, x_{3} then it must contain x_{2}

Here is an example we will not prove.
Example 1.3. Let $\phi_{1}, \ldots, \phi_{p}: \mathcal{X} \rightarrow \mathbb{R}$ be linear (which you can think of as feature maps), and consider $\mathcal{F}=\left\{\mathbb{1}_{\left\{\sum_{i=1}^{p} a_{i} \phi_{i}(x) \leq b\right\}}: a_{i}, b \in \mathbb{R}\right\}$. Then $\nu(\mathcal{F}) \leq p+1$.

By definition, for all $n>\nu(\mathcal{F})$,

$$
\sup _{x_{1: n}}\left|\mathcal{F}\left(x_{1: n}\right)\right| \leq 2^{n}-1
$$

Proposition 1.1 (Vapnik-Chervonenkis, Sauer-Shelah ${ }^{1}$). For \mathcal{F} with $V C$ dimension ν,

$$
\sup _{x_{1: n}}\left|\mathcal{F}\left(x_{1: n}\right)\right| \leq \sum_{i=1}^{\nu}\binom{n}{i} \leq \min \left\{(n+1)^{\nu},\left(\frac{n e}{\nu}\right)^{\nu}\right\}
$$

By this proposition, we immediately have

$$
\mathcal{R}_{n}(\mathcal{F}) \leq D \sqrt{\frac{\nu \log (n+1)}{n}}
$$

Her is an end-to-end result: If $\mathcal{F}=\left\{\mathbb{1}_{\left\{\sum_{i=1}^{p} a_{i} \phi_{i}(x) \leq b\right\}}: a_{i}, b \in \mathbb{R}\right\}$ and $\left(X_{i}\right)_{i \in[n]} \stackrel{\text { iid }}{\sim} \mathbb{P}$, then

$$
\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)-\mathbb{E}[f(X)]\right| \lesssim \sqrt{\frac{(p+1) \log n}{n}}
$$

This $\log n$ factor can be eliminated later by the chaining method.
The proof of this proposition is a combinatorial argument; since the argument will not show up again, we will omit the proof, but you can look at the proof in the textbook.

[^0]
1.2 The metric entropy method

Given a sub-Gaussian X_{θ} for all $\theta \in T$, we hope to upper bound $\mathbb{E}\left[\sup _{\theta \in T} X_{\theta}\right]$. How do we do this when $|T|=\infty$? The idea is to approximate T by a finite set T_{ε} as follows:

This gives

$$
\mathbb{E}\left[\sup _{\theta \in T} X_{\theta}\right] \leq \mathbb{E}\left[\sup _{\widetilde{\theta} \in T_{\varepsilon}} X_{\widetilde{\theta}}\right]+\mathbb{E}\left[\sup _{\theta \in T, \widetilde{\theta} \in T_{\varepsilon}}\left(X_{\theta}-X_{\widetilde{\theta}}\right)\right] .
$$

We hope that

1. $\left|T_{\varepsilon}\right|$ is small.
2. $\mathbb{E}\left[\sup _{\theta \in T, \tilde{\theta} \in T_{\varepsilon}}\left(X_{\theta}-X_{\tilde{\theta}}\right)\right]$ is small.

Given T and ρ, how can we find T_{ε} and bound $\left|T_{\varepsilon}\right|$?

1.3 Covering and packing

Definition 1.2. A metric space is a pair (T, ρ), where $\rho: T \times T \rightarrow \mathbb{R}$ such that

1. $\rho\left(\theta, \theta^{\prime}\right) \geq 0$ for all $\theta, \theta^{\prime} \in T$, with equality holding iff $\theta=\theta^{\prime}$.
2. $\rho\left(\theta, \theta^{\prime}\right)=\rho\left(\theta^{\prime}, \theta\right)$.
3. $\rho\left(\theta, \theta^{\prime}\right) \leq \rho\left(\theta, \theta^{\prime \prime}\right)+\rho\left(\theta^{\prime \prime}, \theta^{\prime}\right)$.

Example 1.4. If $T=\mathbb{R}^{d}$, here are a few useful metrics:

$$
\rho\left(\theta, \theta^{\prime}\right)=\left\|\theta-\theta^{\prime}\right\|_{2}, \quad \rho\left(\theta, \theta^{\prime}\right)=\frac{1}{d} \sum_{i=1}^{d} \mathbb{1}_{\left\{\theta_{i}-\theta_{i}^{\prime}\right\}}
$$

The set T can be a function space, rather than a parameter space.

Example 1.5. Let $T=L^{2}(\mathcal{X}, \mu)$. Here are two metrics on T :

$$
\rho(f, g)=\left(\int(f(x)-g(x))^{2} d \mu(x)\right)^{1 / 2}, \quad \rho(f, g)=\|f-g\|_{\infty}
$$

Definition 1.3. $T_{\varepsilon}=\left\{\theta^{1}, \ldots, \theta^{N}\right\}$ is an ε-covering of a set T if for all $\theta \in T$, there exists a $\theta^{i} \in T_{\varepsilon}$ such that $\rho\left(\theta, \theta^{i}\right) \leq \varepsilon$. The ε-covering number of T with respect to ρ is defined as

$$
N(\varepsilon, T . \rho):=\inf \left\{N:\left|T_{\varepsilon}\right|=N, T_{\varepsilon} \text { is an } \varepsilon \text {-covering of } T .\right.
$$

The maximal inequality gives

$$
\mathbb{E}\left[\max _{\theta \in T_{\varepsilon}} X_{\theta}\right] \lesssim \sqrt{\log \left|T_{\varepsilon}\right|} \approx \sqrt{\log N(\varepsilon ; T, \rho)}
$$

Definition 1.4. The function $\varepsilon \mapsto \log N(\varepsilon ; T, \rho)$ for fixed (T, ρ) is caleld the metric entropy of the set T.

We will see examples that range from parametric families with $\log N(\varepsilon) \approx d \log (1+1 / \varepsilon)$ to nonparametric families with $\log N\left(\varepsilon \approx(1 / \varepsilon)^{\alpha}\right.$, where $\alpha \geq 0$.
Example 1.6. Let $T=[-1,1]$ with $\rho\left(\theta, \theta^{\prime}\right)=\left|\theta-\theta^{\prime}\right|$. Then $N\left(\varepsilon ; T, \rho \leq \frac{1}{\varepsilon}+1\right.$.

Example 1.7. If $T=[-1,1]^{d}$ with $\rho\left(\theta, \theta^{\prime}\right)=\left\|\theta-\theta^{\prime}\right\|_{\infty}$, then $N(\varepsilon ; T, \rho) \leq\left(\frac{1}{\varepsilon}+1\right)^{d}$.

Up to some constant, this bound is tight.
How about with other metrics? We may not be able to figure out a cover/packing. We can take a volume approach: We should expect

$$
\log N(\varepsilon ; T, \rho) \approx \log \left(\frac{\operatorname{Vol}(T)}{\operatorname{Vol}\left(B_{\rho}(\varepsilon)\right)}\right)
$$

To make this statement precise, we can introduce the idea of packing:

Definition 1.5. A set $\widetilde{T}_{\varepsilon}=\left\{\theta^{1}, \ldots, \theta^{M}\right\} \subseteq T$ is an ε-packing if for all $\theta^{i}, \theta^{j} \in \widetilde{T}_{\varepsilon}$ with $i \neq j, \rho\left(\theta^{i}, \theta^{j}\right)>\varepsilon$. The ε-packing number is

$$
M(\varepsilon ; T, \rho)=\sup \left\{M:\left|\widetilde{T}_{\varepsilon}\right|=M, \widetilde{T}_{\varepsilon} \text { is an } \varepsilon \text {-packing of } T\right\} .
$$

This means that $B_{\rho}\left(\theta^{i}, \varepsilon / 2\right) \cap B_{\rho}\left(\theta^{j}, \varepsilon / 2\right)=\varnothing$. Here is a picture from Wainwright's textbook comparing packings and coverings:

Lemma 1.1. For all $\varepsilon>0$, we have

$$
M(2 \varepsilon ; T, \rho) \leq N(\varepsilon ; T, \rho) \leq M \varepsilon ; T, \rho) .
$$

Proof. A maximal ε-packing gives an ε-covering. Suppose we have a maximal packing; then we cannot put another point into the packing, so the entire set T must be covered by the balls determined by the packing.

For a 2ε-packing with size M, all ε-coverings should have size at least M.

Otherwise, we would have a contradiction.

[^0]: ${ }^{1}$ This proposition was proven independently by Vapnik and Chervonenkis in 1971, by Sauer in 1972, and by Shelah by 1972 .

