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1 VC Dimension, Covering, and Packing

1.1 VC dimension

Last time we were discussing function classes with polynomial discrimination. Recall that
a function class F has PD(ν) if for all n and X1:n, |F(X1:n)| ≤ (n+ 1)ν . If F has PD(ν),

then Rn(F) ≤ D
√

ν log(n+1)
n . This gives the bound ‖Pn − P‖F . D

√
ν log(n+1)

n .
What function classes have polynomial discrimination? This question is answered by

VC theory, named for Vapnik and Chervonenkis. If a function class has “VC dimenion ν,”

then F has PD(ν), which means that Rn(F) ≤ D
√

ν log(n+1)
n .

Definition 1.1. Suppose F ⊆ {F : X → {0, 1}} is binary valued. We say that x1:n is
shattered by F if |F(x1:n)| = 2n. The VC dimension, ν(F), is the largest n such that
there exists x1:n shattered by F .

Note that |F(X1:n)| ≤ 2n always. So we want F to be able to distinguish between
points in a maximal sense.

Example 1.1. Let F = {1{x≤t} : t ∈ R}. We claim that ν(F) = 1. Recall that Rn(F) ≤

4

√
log(n+1)

n ; this will also be implied by the VC-dimension. We have to show that there is
some x1 that is shattered by F , and we have to show that no x1, x2 can be shattered by
F .

For n = 1, F({x1}) = {0, 1}, so {x1} is shattered by F . For n = 2, we want to show
thta F({x1, x2}) ≤ 22 − 1. If we assume, without loss of generality, that x2 > x1, this
is because F({x1, x2}) = {(0, 0), (1, 1), (1, 0)}. Why does this not contain (0, 1)? This is
because if one of these indicators gives 1 to x2, then it must give 1 to x1.
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Example 1.2. Let F = {1{s≤x≤t} : s < t ∈ R}. We claim that ν(F) = 2. When n = 2,
we want to find x1, x2 such that |F((x1, x2))| = 22. Here is how we can construct intervals
to shatter a two point set:

Now suppose x1 < x2 < x3. Then we cannot have (1, 0, 1), since if an interval contains
x1, x3 then it must contain x2

Here is an example we will not prove.

Example 1.3. Let φ1, . . . , φp : X → R be linear (which you can think of as feature maps),
and consider F = {1{∑p

i=1 aiφi(x)≤b} : ai, b ∈ R}. Then ν(F) ≤ p+ 1.

By definition, for all n > ν(F),

sup
x1:n
|F(x1:n)| ≤ 2n − 1.

Proposition 1.1 (Vapnik-Chervonenkis, Sauer-Shelah1). For F with VC dimension ν,

sup
x1:n
|F(x1:n)| ≤

ν∑
i=1

(
n

i

)
≤ min

{
(n+ 1)ν ,

(ne
ν

)ν}
.

By this proposition, we immediately have

Rn(F) ≤ D
√
ν log(n+ 1)

n
.

Her is an end-to-end result: If F = {1{∑p
i=1 aiφi(x)≤b} : ai, b ∈ R} and (Xi)i∈[n]

iid∼ P, then

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ .
√

(p+ 1) log n

n
.

This log n factor can be eliminated later by the chaining method.
The proof of this proposition is a combinatorial argument; since the argument will not

show up again, we will omit the proof, but you can look at the proof in the textbook.

1This proposition was proven independently by Vapnik and Chervonenkis in 1971, by Sauer in 1972, and
by Shelah by 1972.
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1.2 The metric entropy method

Given a sub-Gaussian Xθ for all θ ∈ T , we hope to upper bound E[supθ∈T Xθ]. How do we
do this when |T | =∞? The idea is to approximate T by a finite set Tε as follows:

This gives

E
[
sup
θ∈T

Xθ

]
≤ E

[
sup
θ̃∈Tε

X
θ̃

]
+ E

[
sup

θ∈T,θ̃∈Tε
(Xθ −Xθ̃

)

]
.

We hope that

1. |Tε| is small.

2. E[sup
θ∈T,θ̃∈Tε(Xθ −Xθ̃

)] is small.

Given T and ρ, how can we find Tε and bound |Tε|?

1.3 Covering and packing

Definition 1.2. A metric space is a pair (T, ρ), where ρ : T × T → R such that

1. ρ(θ, θ′) ≥ 0 for all θ, θ′ ∈ T , with equality holding iff θ = θ′.

2. ρ(θ, θ′) = ρ(θ′, θ).

3. ρ(θ, θ′) ≤ ρ(θ, θ′′) + ρ(θ′′, θ′).

Example 1.4. If T = Rd, here are a few useful metrics:

ρ(θ, θ′) = ‖θ − θ′‖2, ρ(θ, θ′) =
1

d

d∑
i=1

1{θi−θ′i}

The set T can be a function space, rather than a parameter space.
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Example 1.5. Let T = L2(X , µ). Here are two metrics on T :

ρ(f, g) =

(∫
(f(x)− g(x))2 dµ(x)

)1/2

, ρ(f, g) = ‖f − g‖∞.

Definition 1.3. Tε = {θ1, . . . , θN} is an ε-covering of a set T if for all θ ∈ T , there exists
a θi ∈ Tε such that ρ(θ, θi) ≤ ε. The ε-covering number of T with respect to ρ is defined
as

N(ε, T.ρ) := inf{N : |Tε| = N,Tε is an ε-covering of T .

The maximal inequality gives

E
[
max
θ∈Tε

Xθ

]
.
√

log |Tε| ≈
√

logN(ε;T, ρ).

Definition 1.4. The function ε 7→ logN(ε;T, ρ) for fixed (T, ρ) is caleld the metric
entropy of the set T .

We will see examples that range from parametric families with logN(ε) ≈ d log(1+1/ε)
to nonparametric families with logN(ε ≈ (1/ε)α, where α ≥ 0.

Example 1.6. Let T = [−1, 1] with ρ(θ, θ′) = |θ − θ′|. Then N(ε;T, ρ ≤ 1
ε + 1.

Example 1.7. If T = [−1, 1]d with ρ(θ, θ′) = ‖θ − θ′‖∞, then N(ε;T, ρ) ≤ (1ε + 1)d.

Up to some constant, this bound is tight.

How about with other metrics? We may not be able to figure out a cover/packing. We
can take a volume approach: We should expect

logN(ε;T, ρ) ≈ log

(
Vol(T )

Vol(Bρ(ε))

)
.

To make this statement precise, we can introduce the idea of packing:
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Definition 1.5. A set T̃ε = {θ1, . . . , θM} ⊆ T is an ε-packing if for all θi, θj ∈ T̃ε with
i 6= j, ρ(θi, θj) > ε. The ε-packing number is

M(ε;T, ρ) = sup{M : |T̃ε| = M, T̃ε is an ε-packing of T}.

This means that Bρ(θ
i, ε/2) ∩ Bρ(θj , ε/2) = ∅. Here is a picture from Wainwright’s

textbook comparing packings and coverings:

Lemma 1.1. For all ε > 0, we have

M(2ε;T, ρ) ≤ N(ε;T, ρ) ≤Mε;T, ρ).

Proof. A maximal ε-packing gives an ε-covering. Suppose we have a maximal packing;
then we cannot put another point into the packing, so the entire set T must be covered by
the balls determined by the packing.

For a 2ε-packing with size M , all ε-coverings should have size at least M .

Otherwise, we would have a contradiction.
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